Biological Outcomes of Hyporheic Zone Restoration in an Urban Floodplain

S. Morley, L. Rhodes, A. Baxter, G. Goetz
NOAA Fisheries

K. Lynch
S. Damm
City of Seattle

SPU

City of Seattle Urban Creeks

Thornton Watershed

- Largest and most urbanized
- Water quality concerns
- Flooding problems
- B-IBI scores all “very poor”
- Cutthroat dominated
The Problem: Too Much Runoff and No Storage

Photo: Seattle Public Utilities
The Solution – Reconnect Stream to Floodplain

Before

- Floodplain
- Peak Flow Channel
- Low Flow Channel
- Bank Height

After

Photos: Seattle Public Utilities
Thornton Floodplain Reconnection Projects

Confluence

Knickerbocker

Lake Washington
Seattle Public Utilities Project Goals

• Maximize floodplain storage of stormwater
• Increase reach-scale habitat complexity
• Improve stream biological health
• Test new restoration approach - Hyporheic Zone
Hyporheic Zone

Mixing of surface and groundwater below and alongside channel

- Flood dampening
- Groundwater recharge
- Temperature regulation
- Biological production
- Nutrient cycling
NOAA Monitoring Objectives

- Evaluate biological response to hyporheic restoration
- Experiment with “assisted” recolonization
- Evaluate different hyporheic sampling techniques
Treatment reaches = Urban - restored
Control reaches = Urban - unrestored
Reference reaches = Forested - least disturbed
Monitoring Design – Response Variables

Biota

• Microbes
• Invertebrates

Co-variates

• Temperature (surface & hyporheic)
• Water chemistry
 • Total N & P
 • Dissolved nutrients
 • Dissolved organic carbon
 • Total organic and inorganic matter
Monitoring Design – Sample Methodologies

Piezometers
- To collect samples
- Pump samples
 - interstitial taxa
 - 15-25 cm below bed

Colonization Baskets
- To collect samples AND inoculate
- Substrate samples
 - clingers
 - 0-40 cm below bed
Monitoring Design – Sample Methodologies

Piezometer

Basket
Hyporheic Colonization Baskets
Sample Timeline

2014

<table>
<thead>
<tr>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
</tr>
</thead>
</table>

- **Construction completed**

2015

- **Install piezometers & baskets**

- **Inoculate**

2016

- **Re-sample piezometers & baskets**

2017
NOAA Monitoring Objectives

- Evaluate biological response to hyporheic restoration
- Experiment with “assisted” recolonization
- Evaluate different hyporheic sampling techniques
Inoculation Response – Microbes

Image: Leaping Frog Films
Inoculation Response – Microbes

Pre = Fall 2014
1 = Winter 2015
2 = Spring 2015
3 = Summer 2015
Post = Fall 2015
Inoculation Response – Invertebrates

Image: Leaping Frog Films
Inoculation Response – Invertebrates

![Graph showing inoculation response of invertebrates]

- **Pre**
- **Post**

Invert Taxa Richness
- Reference
- Seeded
- Unseeded

Year: 2014

Fall
NOAA Monitoring Objectives

- Evaluate biological response to hyporheic restoration
- Experiment with “assisted” recolonization
- Evaluate different hyporheic sampling techniques
2-way ANOVA:

- Reach effect: T > C > R
- Reach x Year: Yes
Restoration Response – Invertebrates

Reach
- Reference
- Control
- Treatment

Density (sqrt)
- 2014: T, R > C
- 2015: T, R > C
- 2016: T > C, R

Taxa Richness
- 2014: T, R > C
- 2015: T, R > C
- 2016: T > C, R
Summary of Preliminary Results to Date

Response to experimental inoculation:
- Small transient changes in microbial taxonomic structure
- No significant changes in invertebrate density or structure
- Detection of four “new” invertebrate taxa at inoculated reach

Response to hyporheic restoration:
- Higher microbial metabolic activity
- Greater invertebrate density and taxa richness
- Changes in microbial and invertebrate taxonomic structure

Image Source: S. Iepure
Questions and Suggestions?
Restoration Response – Invertebrates

Density (sqrt) for 2014, 2015, and 2016:
- Treatment (T) > Control (C) and Reference (R)

Taxa Richness for 2014, 2015, and 2016:
- Treatment (T) and Reference (R) > Control (C)
Restoration Response – Invertebrates

Density (sqrt)
- **T > C, R**
- **2014, 2015 > 2016**
- **No Interaction**

Taxa Richness
- **T, R > C**
- **2014 > 2016**
- **Yes Interaction**