Step-Pool Creation to Restore Fish Passage and Riparian Health

Jenny Kindig
Water Resources Engineer

Denny Mengel, Senior Environmental Scientist
Steve Miller, Water Resources Engineer
Gloria Beattie, Water Resources Engineer

Project Background

• Reconstructing Utah Forest Highway 39 through Fishlake National Forest

• Led by FHWA in cooperation with Sevier County and the U.S. Forest Service
Step-Pool Feature

Mitigation Wetlands

Step-Pool Reach

- Channel instability caused by inadequate hydraulic capacity of existing culvert
Design Details - Step-Pool Reach

• Matches existing channel geometry
 – Invert elevation drop (2.4 meters)
 – Channel length (38.6 meters)
 – Slope (0.063)

• Meets fish passage criteria
 – 0.3 meters

• Morphometric features
 – $1 \leq \{(H/L) \text{ average} / S\} \leq 2$
 • Abrahams et al., 1995

Design Details - Step-Pool Reach

• Existing bankfull channel geometry
 – Bottom width (2.7 meters)
 – Top width (4.6 meters)
 – Depth (1.1 meters)

• Step-pool channel geometry
 – Bottom width (3 meters)
 – Channel and overbank side slopes (3:1)
 – Depth (1.0 meter over crests, 1.25 meter over pools)
Design Details - Step-Pool Reach

• Final proposed configuration:
 – 9 crests / 8 pools over the 40-meter reach
 – Pool spacing of 4.9 meters
 – 0.3-meter elevation drop from pool-crest to pool-crest

Design Details - Step-Pool Reach

• Final proposed configuration:
 – Boulder structures extend to the bankfull (1.5-year return interval discharge) stage elevation
 – Extend rock sill or key up to 2-feet above the 100-year discharge
Design Details - Step-Pool Reach

• Rock riprap and live willow cuttings
• Riprap sized to accommodate 100-year and 500-year flood events
 – Step-pool crests and footer rocks consist of 1-meter boulders
• Live willow stakes and deciduous tree plantings for long-term stability

Mitigation Wetlands

• Required to compensate for road realignments and several crossings of Gooseberry Creek
• Mitigation site is degraded reach upstream from culvert
 – Livestock grazing
 – Downstream undersized culvert
Design Details - Mitigation Wetlands

• Channel Characteristics
 – E5 Rosgen stream type
 – Bank Failure

Design Details - Mitigation Wetlands

• Bank Protection
 – ~198 meters of shoreline protected using local willow cuttings
 – ~17 meters of shoreline protected using willow fascines or coir logs
Design Details - Mitigation Wetlands

• Bank Protection
 – ~11.6 meters of shoreline protected using boulders

Design Details - Mitigation Wetlands

• Woody Species Plantings
 – 13 cottonwoods
 – 3 river birch
 – ~175 square meters of riparian area planted using willow cuttings
Design Details - Mitigation Wetlands

- Riparian Herbaceous Vegetation
 - Planting of ~242 square meters
- Upland Restoration
 - Restoration of ~226 square meters of degraded oak communities
- Site Fencing

Design Details - Mitigation Wetlands

- Performance Criteria
 - Riparian and upland vegetation monitoring
 - Percent canopy cover, survival, no invasive weed species
- Monitoring Methods
 - Baseline (before construction)
 - Yearly monitoring
 - Final measurements (Year 5)
Design Summary

• Site improvements
 – Step-pool feature
 – Slope stabilization
 – Revegetation of riparian and upland areas

• Relies on bioengineering wherever possible, and only uses rock revetments where necessary

Construction and Implementation

• Construction of roadway began in October 2004
• Two-year schedule for entire roadway project
Questions?