Beyond ‘do no harm’: Restoration Needs of Freshwater Mussels

River Restoration Northwest Symposium- Stevenson, WA- February 8, 2024

Presented by Laura McMullen
Additional Authors: Zee Searles Mazzacano¹, Travis Williams², Kevin MacKay¹

¹ICF, Portland, Oregon ²Willamette Riverkeeper, Oregon City, Oregon

Contact Laura.McMullen@icf.com
Freshwater Mussels of PNW

- Floater mussels
 Anodonta clade

- Western pearlshell mussel
 (*Margaritifera falcata*)

- Western ridged mussel
 (*Gonidea angulata*)
“Given the integrative role of mussels in food webs and ecosystem structure, the restoration of mussels has a greater potential to generate ecosystem-scale benefits through providing beneficial interactions and enhancing ecosystem functioning.” – Eveleens & Febria (2022)
“Given the integrative role of mussels in food webs and ecosystem structure, the restoration of mussels has a greater potential to generate ecosystem-scale benefits through providing beneficial interactions and enhancing ecosystem functioning.” – Eveleens & Febria (2022)
Freshwater Mussels and Native Fish

Mussel & native host fish (primarily salmonids) life cycles intertwined

Conservation of either can benefit both
Decline of Pacific Northwest Freshwater Mussels

All native PNW FW mussel species have experienced some combination of range withdrawals, decline in abundance, or lack of recruitment.

Reasons for decline:
Water quality
Flow changes
Host fish declines
Restoration itself
Restoration of Freshwater Mussels

- Mussel population augmentation
- Host fish re-introduction
- Habitat restoration

Types of restoration from Eveleens and Febria (2022)
Habitat Restoration for Freshwater Mussels

▪ We do have some information on habitat preferences for mussels, but more information on habitat associations and requirements is needed.

▪ More distribution and population status information on freshwater mussels is also needed.
Mussel Habitat Requirements

Western Pearlshell

<table>
<thead>
<tr>
<th>Substrate & flows</th>
<th>Water quality</th>
<th>Fish hosts</th>
<th>Reproductive period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobble/gravel interspersed with boulders in slow to moderate flows; in faster flows at stable bank edges and in flow refuge microhabitats; also at sand/gravel bank edges; unpredictable flow regimes can increase burying in substrate; water depths up to 3 m</td>
<td>Colder, better oxygenated water; intolerant of eutrophication, turbidity (but can be abundant in some urban streams); wide range of elevations</td>
<td>Chinook, steelhead/rainbow trout, Coho, cutthroat trout</td>
<td>Intrinsically low recruitment rate; glochidia release generally spring/summer; can vary with watershed and water temperature; can be hermaphroditic and self-fertilizing</td>
</tr>
</tbody>
</table>

Photo Cred: C.A. Searles
Mussel Habitat Requirements

Western Ridged Mussel

<table>
<thead>
<tr>
<th>Substrate & flows</th>
<th>Water quality</th>
<th>Fish hosts</th>
<th>Reproductive period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilized sand & gravel bars, bank edges in waters 45 cm–3 m deep; may also be in coarse sand or between cobbles; lower to moderate velocity, flow refuge microhabitats</td>
<td>Cold clean water; more tolerant of softer substrates than M. falcata; generally low- to mid-elevation; may co-occur with M. falcata or Anodonta</td>
<td>Not entirely known, include margined and shorthead sculpin, dace, northern pikeminnow</td>
<td>Gravid females found April-July</td>
</tr>
</tbody>
</table>

Photo Cred: Z. Searles Mazzacano
Mussel Habitat Requirements

- **Floaters (Anodonta clades)**

<table>
<thead>
<tr>
<th>Substrate & flows</th>
<th>Water quality</th>
<th>Fish hosts</th>
<th>Reproductive period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft sediments; coarse sand; silt/sand/cobble; slow velocity, little shear stress; depths up to 3 m</td>
<td>Warmer, slower flows; more tolerant of sediment and/or eutrophication; seen in pools 1.7-2.2 m deep at temps up to 31°C, DO from 5-15 mg/L</td>
<td>Not entirely known, include threespine stickleback prickly sculpin, Dolly Varden, cutthroat, speckled dace, torrent sculpin, redside shiner</td>
<td>Females gravid late summer through following spring, glochidia released late fall to spring</td>
</tr>
</tbody>
</table>

Photo Cred: Z. Searles Mazzacano
Habitat Overlap - Freshwater Mussels and Salmon

<table>
<thead>
<tr>
<th>Habitat Access</th>
<th>Edge Habitat</th>
<th>Substrate Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonids</td>
<td>Needs to be able to migrate upstream to spawning habitat</td>
<td>Benefit from shallow edge habitat for spawning and rearing</td>
</tr>
<tr>
<td>Freshwater Mussels</td>
<td>Host fish access improves mussel access</td>
<td>Flow refuge and ideal depths</td>
</tr>
<tr>
<td></td>
<td>Bank Stability</td>
<td>Flows</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Salmonids</td>
<td>Decreases erosion that leads to fine sediment and improves channel integrity</td>
<td>Variety in flows and timing through year is important. Faster flows needed for outmigration. Also need for refuges and slower areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshwater Mussels</td>
<td>Provides consistent habitat, decreases fine sediment</td>
<td>Prefer slow to moderate flows; in faster flows need refuge</td>
</tr>
</tbody>
</table>
FW Mussel Restoration Treatments
Barrier Removals

Passage improvement for steelhead
Solstice Creek, CA
Photo Cred: K. MacKay
FW Mussel Restoration Treatments
Increase Bank Stability and Reduce Sedimentation

Crib wall for bank stability
Guadalupe Creek, CA
Photo Cred: K. MacKay
FW Mussel Restoration Treatments
Increase Shading/ Improve Water Temperatures

Riparian area, Johnson Creek, OR
Photo Cred: L. McMullen

Riparian area, Salmon River, OR
Photo Cred: L. McMullen
FW Mussel Restoration Treatments
Increase Coarse Substrate/Substrate Diversity
Modeling Restoration/ Protection Priorities- Mussels
Conceptual Framework

STEP 1

Host fish presence + Host fish abundance estimates + Habitat attributes important to mussels → Spatially-explicit habitat model for mussels
Modeling Restoration/Protection Priorities - Mussels

Conceptual Framework

STEP 1

- Host fish presence
- Host fish abundance estimates
- Habitat attributes important to mussels

→ Spatially-explicit habitat model for mussels

STEP 2

Iterative comparison of restoration of different areas of watershed

→ Model changes in predicted host fish abundance with restoration of each area

→ Model changes in habitat attributes important to mussels with restoration of each area

Which leads to most improvement in mussel habitat throughout the basin?
Modeling Restoration/ Protection Priorities- Mussels

Conceptual Framework

Could build from framework of Ecosystem Diagnosis & Treatment (EDT) or a similar spatial model.

STEP 1

Host fish presence + Host fish abundance estimates + Habitat attributes important to mussels → Spatially-explicit habitat suitability for mussels

STEP 2

Iterative comparison of restoration of different areas of watershed → Model changes in predicted host fish abundance with restoration of each area

Model changes in habitat attributes important to mussels with restoration of each area → Which leads to most improvement in mussel habitat throughout the basin?
Modeling Restoration/Protection Priorities - Mussels

Conceptual Framework

+ Habitat Features important to Mussels → Weighted Spatial Mussel Model
Literature Cited and Acknowledgements

Acknowledgements for Funding and Partnerships:

Oregon Watershed Enhancement Board (OWEB)
Oregon Conservation and Research Fund (OCRF)
Alice Tyler Trust
Grand Ronde Tribe
Freshwater mussels are worth our time and effort in restoration.

Contact: Laura McMullen
Laura.McMullen@icf.com