Simulating Streams Through Culverts in Mat-Su, Alaska

Project Managers
Bill Rice, P.E., USFWS Hydrologist
Mary Price, USFWS Fishery Biologist

The Team Approach

US Fish and Wildlife Service
Bill Rice, P.E., Hydrologist
Mary Price, Fishery Biologist

Matanuska-Susitna Borough
Chuck Kaucic, Public Works Project Manager

Alaska Fish and Game
Steve Albert, Habitat Biologist

Alaska DNR OHMP
Jeff Davis, Area Manager
Matt LaCroix, Habitat Biologist

National Marine Fisheries
Erika Phillips, Grant Manager
The Location

Objectives

- Results of Mat-Su Culvert Survey
- Present Stream Simulation Methodology
- Describe the Culvert Replacement Approach in Mat-Su
- Present a Series of Culvert Replacements
- Future Efforts and Needs
The Problem

- WA: 33,000 culvert barriers
- OR: 30,000 culvert barriers

1999/2004 Culvert Surveys
- 289 culverts surveyed
- Median OHW width: 7 ft.
- 30% creeks <3 feet wide
- 200-300 miles of creek

The Problem

Tongass Survey 2000

Mat-Su Surveys 1999/2004 Streams
Improperly Sized Culverts

- Barriers to Aquatic/Wildlife Movement
- Decrease Habitat

- Change Stream Processes

Improperly Sized Culverts

- Increase Flooding Risk
- Increase Infrastructure Maintenance Costs
Project Objectives – What is Success?

Stream Simulation
- Pass Game Fish (hydraulic design)
- Range of culvert designs
- Better
- Range of ecological functions
- Floodplain Continuity
- Pass adult salmon
- Pass sediment, debris, all aquatic organisms
- Floodplain Process Permitted (meander migration)
- Make the Road Crossing “Invisible”

The Current Solution

- Aquatic Barrier
- Significant Function Effects
- Habitat Value
- Cost
- Stream/Floodplain
- Timing
- Culvert Replacement
- Funding
 - Borough
 - USFWS
 - NRCS
 - NMFS
- Bridge
- CIP Process

Worse
- Flood Capacity
- Pass Game Fish
- Range of culvert designs
Stream Simulation

- “Simulate” adjacent natural channel
- Premise: channel inside culvert should present no more of an obstacle to movement of organisms than adjacent natural channel.

Well-graded native streambed sediment – and withstands 50-year event.

Rockbands: Based on slope and distance.

Culvert bed width = Varies

30-50% of culvert rise.
Alaska DOT/ F&G Simulation Definition

- Culvert width at OHW = 0.9 x channel OHW width
- Slope within 1% of natural grade
- Slope greater than 6% requires additional analysis
- Bed “dynamically stable” up to Q50
- Embed minimum 40% (arch pipes 20%)
- No further hydraulic analysis needed to support fish passage

Good Flood Width
Meadow Creek
Width ratio = 1.5
Slope = 0.9%

Note: Rockband keeps channel form
Natural Streambed
Flow Isolated from Culvert Walls
Crooked Lake System

Culvert Design/Construction

Culvert 1:
- 48-inch Culvert with 2 Relief Culverts
- Design Slope 1.2%
- Fish Passage Event: 10 cfs
- Streambed with 1.5 foot Gravel/Cobbles
- Streambed D50= 3 inches/ D100 = 6 inches
- 100-Year Event: 41 cfs
Crooked Lake System

Culvert Design/Construction

Culvert 2 & 3:
- 48-inch Culverts
- Design Slope 2.5% and 0.5%
- Fish Passage Event: 3.6 cfs
- Streambed D50= 3 inches/ D100 = 6 inches
- Streambed with 1.6 foot Gravel/Cobbles
- 100-Year Event: 28 cfs

Culvert 1
- Culvert too Steep
- DS Invert Too Low
- Shallow Bed US
- Passes Juveniles
- Better Function

Crooked Lake System

Culvert 2 & 3:
- 48-inch Culverts
- Design Slope 2.5% and 0.5%
- Fish Passage Event: 3.6 cfs
- Streambed D50= 3 inches/ D100 = 6 inches
- Streambed with 1.6 foot Gravel/Cobbles
- 100-Year Event: 28 cfs
Crooked Lake System

- Changed Bed Material
- Streambed 3.2% not 2.2%
- Needed Channel in Culvert

- Changed Bed Material
- Streambed 3.4% not 0.5%
- Needed More Fill over Culvert
- Needed Streambed Shaped

Meadow Creek Culvert

Big Lake Watershed: ~90 sq. miles
Culvert Drainage: ~7 sq. miles
Meadow Creek Culvert

Design:
- 7 by 14 foot Arch
- Design Slope 0.75%
- Fish Passage Event: 24 cfs
- Streambed D50= 3 inches/ D100 = 6 inches
- Streambed 2-foot Gravel/Cobbles
- 100-Year Event: 150 cfs

More Bed Material Needed
- Streambed 0.9%
- Did not Form Main Channel
- Rockbands
- Beaver Control
Lucy Lake Tributary

Old Culverts:
- 36-inch Culverts
- Slopes 1.3-5.2%
- Perch: 0.3-2.4 ft.

Lucy Lake System

Culverts:
- 54-inch Culverts for Stream
- Design Slope 1.1-2.0%
- Fish Passage Event: 3 cfs
- Streambed with 1 foot Gravel/Cobbles
- Streambed D50= 0.5 inches/ D100 = 4 inches
- 100-Year Event: 27 cfs
Results

• Eight Culverts Replaced in 2004
• 3.5 miles US Habitat Accessed
• Key Main Stem Culvert Replaced

• CIP Process Initiated
• Prioritization Begun

Future Challenges

• Prioritization
• Education

• Replacement of Key Culverts Under Pavement
• Replacement of Culverts With Bridges