Guidelines for evaluation of stream and watershed rehabilitation

Phil Roni and Martin Liermann
Watershed Program
Environmental Conservation Division
National Oceanic and Atmospheric Administration
Northwest Fisheries Science Center
Seattle, Washington

Why Monitor?

- Millions spent on rehabilitation of aquatic habitats
- Assure techniques are effective
- Guide future restoration efforts
- Understand aquatic ecosystems and biota
- Best chance for field experiments
- Continued public support
Types of Monitoring

- **Status and trend**
 Annual measures of abundance, condition, etc.

- **Implementation**
 Was project implemented as planned

- **Effectiveness and validation**
 Did projects have desired physical/biological effect
 Experiments/hypothesis driven

Effectiveness Monitoring Guidance

- Define project goals and objectives
- Define questions/hypotheses
- Define scale
- Determine monitoring design
- Select parameters
- Spatial and temporal replication
- Selecting sampling scheme/protocol
Questions/Hypotheses

Reach Scale
- What is effect of project x on local conditions or fish abundance?
- What is effect of projects like x on local conditions or fish abundance?

Watershed Scale
- What is effect of project x on watershed conditions or a salmon population?
- What is effect of a suite of projects on watershed conditions or a salmon population?

Monitoring/Study Designs

- Before After or BACI
 - Intensive
 - Extensive

- Post-treatment
 - Extensive
Example of data from Alsea Basin
(from Solazzi et al. 2000)

Years of Monitoring

Number of coho smolts

- Control Watershed
- Treatment Watershed

Before
After

Number of projects (n = 20)

BA and BACI designs
Extensive Posttreatment Design

Roni and Quinn 2001

- LWD placement projects
- 30 small streams
- Paired treat. & ref. Reaches
- Space for time substitution

What is effect of projects like X on local fish abundance?

<table>
<thead>
<tr>
<th>Species</th>
<th>Summer</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coho salmon</td>
<td>80%*</td>
<td>220%*</td>
</tr>
<tr>
<td>Cutthroat trout</td>
<td>30%</td>
<td>70%*</td>
</tr>
<tr>
<td>Steelhead trout</td>
<td>20%</td>
<td>70%*</td>
</tr>
<tr>
<td>Larval lamprey</td>
<td>50%</td>
<td>--</td>
</tr>
</tbody>
</table>

*< 0.05
Regression Analysis: Relationship between coho response and pool-forming LWD

![Graph showing the relationship between coho density and pool-forming LWD with an r^2 value of 0.25.]

Strengths of Monitoring Designs

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Before-after</th>
<th>Post-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Int.</td>
<td>Ext.</td>
</tr>
<tr>
<td>Interannual variation</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Correlate to physical</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Results broadly applicable</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Length of monitoring</td>
<td>10+</td>
<td>1-4</td>
</tr>
</tbody>
</table>
Spatial and Temporal Replication

- How many sites?

- How many years?

Depends on - Type of Rehabilitation

Riparian planting – long term

Instream - immediate

restoration

year

smolts
Rehabilitation schedule

Gradual

All at once

Restoration

Year

BACI Design

Site 1

Site 2

Site 3

Years
Temporal variability (within site)

Among site variability (in rehabilitation response)
Power analysis to estimate sample size

- Estimate of variability
- Desired effect size
- \(\alpha = 0.05 \) (level of significance)
- \(B = 0.80 \) (1 - B = Power or ability to detect change)

Power Analysis
(among site variability)
When Selecting Parameters -

- Linked to key question/hypothesis
- Change in measurable way linked to treatment
- Have limited/manageable variability

What to monitor for various actions?

<table>
<thead>
<tr>
<th>Restoration Technique</th>
<th>habitat</th>
<th>primary</th>
<th>Inverts</th>
<th>fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culvert/Passage</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>In-stream</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Riparian</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>Sediment</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>?</td>
</tr>
<tr>
<td>Easements</td>
<td>X</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>All projects</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Common Sampling Schemes

- Census
- Simple random
- Systematic
- Stratified random
- Line transect

Example Large Wood Placement

- H0 What is the average of effect of LWD placement on habitat and fish?
- Design Extensive post-treatment design
- Scale - Reach scale (paired treat. and cont.)
- Replication – spatial n = 30
- Parameter – fish, habitat
- Sampling - census
Analysis and Reporting

- Analyze and write up data
- Publish results!!!

Effectiveness Monitoring Guidance

- Define project goals and objectives
- Define questions/hypotheses
- Define scale
- Determine monitoring design
- Select parameters
- Spatial and temporal replication
- Selecting sampling scheme/protocol