Restoration concepts for large rivers – experiences from the Danube

Fritz Schiemer

Department of Limnology
Ecology Center
University of Vienna
Scope

1. Danube – a major W-E corridor in Europe
2. major river engineering works, ecological consequences
3. restoration scenarios: scope, approaches, constraints
4. developing guidelines
Danube – a major W-E corridor in Europe

- Length: 2,900 km
- Catchment area: 805,000 km²
- Mean discharge at mouth: 6,500 m³/sec.
River engineering - chain of dams, regulation

River km
Immediate effects:
- loss of
 - riverine inshore zones
 - hydrol. connectivity
 - geomorphic processes
Long-term consequences of river regulation
Restoration scenarios

1. Vienna–Bratislava
2. Lobau
3. Bratislava–Budapest

- environmental state
- restoration scope and reversibility
- stakeholder interest
- constraints
Scenario 1: Vienna to Bratislava
floodplain scenarios:
- ecological state
- connectivity
- reversibility

“Integrated River Engineering Programme”
Restoration goal: sidearm reconnection

A first large scale pilot programme (Schiemer et al. 1999)

1. Lowering of riverside embankments
2. Increasing flow capacities between floodplain lakes
Restoration goal: rehabilitation of inshore zones

Inshore Retention Concept
Schiemer et al. 2001
Navigation:

Pan European Transport Corridor
Requested navigation corridor: 120m x 3.2m

MLWL-regulation achieved by:
- gravel excavation
- groynes
Approach to resolve controversy

- Scientific board (ecologists, hydrologists, navigation experts, socio-economists)

- Planning team (civil engineers plus ecology consultants)

- Stakeholders

- Public participation
3 years process

joint planning principles

12 scenarios

ecological benchmarking
Achieved compromise

1. reduced waterway transect:
 100x2.7m instead of 120x3.2 m

2. added restoration measures:
 a) “granulometric bed improvement” (N,E)
 b) river bank restoration (E)
 c) side arm reconnection (E)

EIA, Implementation 2008 - 2020
Bratislava-Budapest

“Strategic environmental impact assessment”
Directive 2001/42/EC
A general “standard operating procedure” (SOP) for Large River Restoration

1. Legal framework
 - “Water Framework directive” 2000/60/EC
 - “Habitats Directive” (92/43/EC)

2. Guidelines for a scientific approach

3. Integrated planning approach
Guidelines for a scientific approach to large river rest.

1. reference standards, hierarch. framework of application
2. ecological targets, reversibility and sustainability
3. formulation of prognostic eco-hydrological parameter
4. interdisciplinary monitoring programmes
Restoration

“re-establishment of predisturbance aquatic functions and related physical, chemical and biological characteristics”

Reference standard

Original landscape pattern as the dynamic equilibrium of fluvial processes; defined by geomorphology, hydrology and bed load transport
Hierarchical framework to be followed in the application of reference standards

- **key processes**
 (hydrology & geomorphic dynamic)

- **landscape composition**
 dynamic equilibrium in habitat composition & connectivity

- **Characteristic ecological processes**
 and biotic diversity
Development and promotion of restoration

- Scope and necessity for restoration high (acc. WFD)
- Legal framework not sufficient to promote programs with exclusively environmental orientation
- Strong stakeholder interests for: flood control, water abstraction, navigation, (hydropower)
- From a conservationist point of view it is necessary to build alliances and develop win-win situations
Integrative Planning Approach

- interdisc. teams (experts, planners)
- define planning objectives & priorities
- transparent planning process
- stepwise, adaptive implementation

friedrich.schiemer@univie.ac.at
The functional response between connectivity and biodiversity
„Regelsbrunn“ before restoration

The graph shows the connectivity (months) on the x-axis and the species number on the y-axis. The species are classified into three categories: macrophytes, molluscs, and rheophilic fish. The graph indicates a decrease in macrophytes and an increase in molluscs and rheophilic fish over the months.
„Regelsbrunn“ after restoration

![Graph showing the recovery of species numbers and connectivity over time.](Image)
Scenario: Lobau

Restoration goals:

- maintaining wetlands by water enhancement
- upstream connection with the river

Stakeholders:

- flood control
- drinking water supply

Resolution:

- interdisciplinary planning process

Implementation: 2012?
Functional response of limnological parameters to „water-age“

![Graph showing the relationship between water age and Chl a, PIM, PO4 concentrations.](image)

- Chl a, PIM, PO4 (µg l⁻¹)
- Water age (days)
- Connected
- Disconnected
- Flooding

Graph labels:
- Chl a
- PIM
- PO4
Functional response of limnological parameters to „water-age“

- **Chl a, PIM, PO₄ (µg l⁻¹)**
- **Water age (days)**

Graph showing the change in Chl a, PIM, and PO₄ concentrations over time (water age) in a flooded and disconnected water system.
Functional response of limnological parameters to „water–age“

Water age (days)

Chl a, PIM, PO4 (µg l⁻¹)

flooding

connected
disconnected

0 10 20 30 40 50 60

Chl a

PIM

PO4

water age (days)
Chl a, PIM, PO$_4$ (μg l$^{-1}$)

Bakterien (μg C l$^{-1}$)

flooding

connected
disconnected

water age (days)

Bakterien
Chl a
PIM
PO$_4$
Scenario: Bratislava - Budapest

Ecological requirements:
 - water diversion

Stakeholder:
 - national politics
 - hydropower: Slovakia yes, Hungary no
 - navigation

Resolution:
 “strategic environmental impact assessment”
 Directive 2001/42/EC
Comparison of scenarios

<table>
<thead>
<tr>
<th></th>
<th>Vien-Brat</th>
<th>Lobau</th>
<th>Brat-Bud</th>
</tr>
</thead>
<tbody>
<tr>
<td>deviation from</td>
<td>low</td>
<td>high</td>
<td>high</td>
</tr>
<tr>
<td>reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ecol. targets</td>
<td>rest. fluv. processes</td>
<td>water enhancement</td>
<td>water enhancement</td>
</tr>
<tr>
<td>stakeholders</td>
<td>navigation</td>
<td>flood control</td>
<td>hydropower navigation</td>
</tr>
</tbody>
</table>
Scenario 2: urban floodplain Lobau
1.5 m3 s$^{-1}$

- Drinking water abstraction
- Backflow of floods

Levees
80 m³ s⁻¹

1,5 m³ s⁻¹

drinking water abstraction

backflow of floods

levees
Integrative Planning Approach

1. Restoration planning steps based on „Scientific guidelines“

 - assess deficiencies
 - assess irreversible changes
 - define constraints by other water uses
 - delineate ecol. targets
 - assess feasibility of restoration measures
 - predict long-term dynamic endpoints
2. Recommended approach

- interdisc. teams (experts, planners, managers)
- transparent planning process
- define planning objectives, priority ranking
- stepwise, adaptive implementation
- interdisciplinary monitoring programmes