Design Guidelines for Engineered Placement of Wood

Ian Mostrenko
Herrera Environmental Consultants
EPW – Design Guidelines

Why?
- Performance
- No established standard of practice
- Liability (infrastructure/public safety)

What?
- Process
- reference list
- checklist
- Identify appropriate technical and stakeholder involvement
EPW – Design Guidelines

Project Definition
- Habitat Assessment
- Reach Analysis
- Geomorphic Analysis
- Identify Hazards

Goals/Objectives
- Constraints
- Concept(s)

Design Development
- Risk-based
- PS&E

Implementation
- Construction
- Monitoring
- Adaptive Management

Liability Management
- Environmental
- Public Safety
- Infrastructure
EPW – Design Guidelines

- Project Definition
- Analysis
 - Hazard & Risk Assessment
 - Alternatives Feasibility
 - Preferred Alternative
 - Basis of Design
 - PS&E
- Implementation
- Liability Management
EPW – Design Guidelines

• What is Risk?

To expose to a chance of loss or damage; hazard

Hazard is the potential to cause harm; risk on the other hand is the likelihood of harm

Risk = Likelihood x Consequence

• Hazard & Risk Assessment
What is Risk?

- To expose to a chance of loss or damage; hazard

Risk = Likelihood \times \text{Consequence}

Hazard & Risk Assessment

Identifying sources of potential harm, assessing the likelihood that harm will occur, and the consequences if harm does occur.
• What is Risk?

- To expose to a chance of loss or damage; hazard

Risk = Likelihood x Consequence

• Hazard & Risk Assessment

Identifying sources of potential harm, assessing the likelihood that harm will occur, and the consequences if harm does occur.
EPW – Design Guidelines

• What is Risk?
 ➢ To expose to a chance of loss or damage; hazard

 Risk = Likelihood × Consequence

• Hazard & Risk Assessment
 Identifying sources of potential harm, assessing the likelihood that harm will occur, and the consequences if harm does occur.
EPW – Design Guidelines

Analysis

Alternatives

Feasibility

Hazard & Risk Assessment

1

2

3

Geomorphology

Hydrology

Hydraulics

Cost / Benefit

Habitat / Ecology

Constructability

Project Stakeholder Input

Permitting

Safety Workgroup

Structural / Stability Analysis

Preferred Alternative

Final Design
1) Analysis

- Sediment Input
- Transport Capacity (sediment and wood)
- Hydrologic
- Hydraulic
- Erosion / Scour
- Structural Stability
- Life cycle / Decay
- Ice or wood loading
- Costing
2) Alternative Analysis

- Establish Criteria
 - Goals/objectives
 - Risks
 - Cost/Benefit
- Selection of concept
- Avoid optimism bias
3) Hazard & Risk Assessment

- **Hazard**
 - Flooding
 - Erosion
 - Avulsion
 - Public Safety
 - Habitat
- **Risk**
 - Loss of Property
 - Loss of Life
 - Ecological Loss or Lost Opportunities
EPW – Design Guidelines

Design

• Calculations
 - Scour
 - Static Force Balance
 - Impact & Fatigue
 - Aggradation

• Level of Design
 - Factor of Safety
 - Sensitivity Analysis
 - Redundancy

• Ice / Wood loading
• Individual log strength
• Life cycle / Decay
Conclusion:

- Risk-based process
- Reference tool
- Checklist(s)
- Keys on input from a broad range of disciplines
- Introducing wood is important, it’s evolving rapidly, it’s time.