Restoring the River Rhine (NL): achievements and challenges

Henk Wolfert
The River Rhine delta metropolis

- High population density
- Shipping transport
The River Rhine in the Netherlands

- **Discharge**
 - Mean 2,200 m3/s
 - Max 12,800 m3/s

- **Safety standard dikes**
 - 1/1,250 – 1/10,000 /yr
Traditional river management

- Flood control: dikes and agricultural use
 - Increased floodplain sedimentation rates: wetland loss
 - Agricultural use: no floodplain forest

- Navigation channel: groynes
 - Channel degradation: decrease of connectivity
 - Too dynamic main channel: loss of aquatic habitat
 - No lateral erosion and deposition
1990s: River rehabilitation policy

- Nature conservation → nature rehabilitation

- River rehabilitation projects
 - + 7,000 ha in 2015

- Measures
 - Patches of forests and marshes
 - Connecting floodplain channels
 - Extensive grazing for vegetation diversity
Historical references: working with nature
Scenarios studies

- Plan design
 - Landscape level

- Plan evaluation
 - Species level

LEDESS model
- Vegetation succession
- Habitat suitability
- Agricultural suitability
- Costs

LEDESS = Landscape Ecological Decision Support System
Network analysis

- LARCH model (species level)
 - Corridor function of rivers (Fig: Bluethroat)

LARCH = Landscape Analysis and Rules for the Configuration of Habitat
River rehabilitation = floodplain projects
Geomorphologic processes back
Biodiversity increased

- Increase in low dynamic channel habitat: increase in juvenile fish
- Formation of new habitats: pioneer vegetations, insects and birds
- Overall increase in fish species diversity (Fig.)
Public perception increased

- River dynamics greatly appreciated
- Conservation of cultural heritage improves acceptance of change
2000s: Room for River policy

- High discharge events 1993 and 1995
 - 250,000 evacuated
 - Design discharge 15,000→16,000 m³/s

- Room for River projects
 - 2.2 billion Euro
 - In 2015

- Measures
 - Floodplain stripping
 - Secondary channels
 - Removal obstacles
Climatic change

Air circulation patterns

G+ + 1°C
W+ + 2°C

G
W

Global temperature in 2050 compared to 1990

Graph showing mean Q [m³/s] from January to December.
New floodways: design and effects
New research challenges

- Present Room for River measures are beneficial to nature
 - Floodplain stripping
 - Secondary channels
- But, vegetation succession increases floodplain roughness
Modelling vegetation succession $t=1, 5, 10, (30), 100$ year
Secondary channels vs floodplain stripping

[Diagram showing the comparison between main channel and secondary channels with and without reed-covered floodplain.]
Succession + sedimentation and discharge capacity

Discharge capacity (m³/s)

Year

- Geen maatregel
- Uiterwaardverlaging
- Nevengeul
- Maatgevende afvoer 1/500
Floodplain maintenance: choices to be made

- Secondary channels are > 5x longer effective than stripped floodplains with reedland
- Maintenance costs of secondary channels are ca. 65% of the costs of stripped floodplains with reedland
- Besides, secondary channels are inherent to the river system
Effect varies per location

Legend

<table>
<thead>
<tr>
<th>Variant</th>
<th>DIFWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.26811 - 0.00000</td>
<td>-0.00001 - 0.01000</td>
</tr>
<tr>
<td>0.01001 - 0.02000</td>
<td></td>
</tr>
<tr>
<td>0.02001 - 0.03000</td>
<td></td>
</tr>
<tr>
<td>0.03001 - 0.04000</td>
<td></td>
</tr>
<tr>
<td>0.04001 - 0.05000</td>
<td></td>
</tr>
<tr>
<td>0.05001 - 0.06000</td>
<td></td>
</tr>
<tr>
<td>0.06001 - 0.07000</td>
<td></td>
</tr>
<tr>
<td>0.07001 - 0.08000</td>
<td></td>
</tr>
<tr>
<td>0.08001 - 0.09000</td>
<td></td>
</tr>
</tbody>
</table>
Cyclic rejuvenation concept
Conclusions

- Flood control and river navigation are serious constraints to lowland river rehabilitation.
- Under these conditions, the river ecosystem can benefit from restoration of the floodplain.
- Careful selection of the most beneficial sites for restoration is needed to optimize the results.
- Policy goals should best be set at the river reach level.
- Further transboundary cooperation is needed to tackle remaining problems.
Thank you!

henk.wolfert@wur.nl