Analysis of Cost-Effective Rehabilitation: Principles and Tools for Reducing Uncertainty in Design

Andrew Simon and Natasha Bankhead

Cardno ENTRIX, Oxford, MS

andrew.simon@cardno.com
Often the Questions are Basic Ones

• Is the bank/bed stable?
• How much will it erode over “x” number of years or for a given range of flows?
• Can erosion be reduced/stopped using various techniques?
• Can we allow for “natural” processes without threats to assets, infrastructure and human safety?
• Should we do nothing, use rock, engineered wood structures, flow deflectors, vegetation?
• What is the most effective?
• Is it affordable?
But My Stream is Different...

- The physics of erosion are the same wherever you are...no matter what hydro-physiographic province, stream type or river style you are in...channel response is a matter of quantifying available force, and resistance of the channel boundary.
- Channel adjustment is driven by an imbalance between the driving and resisting forces.
- Differences in rates and magnitudes of adjustment, sediment transport rates and ultimate channel forms are a matter of defining those forces...deterministically or empirically.
The Processes: Force and Resistance

• *Hydrologic*: The principle driver (*expressed as discharge over time*);

• *Hydraulic*: How discharge is translated to a quantifiable force acting on the channel boundary (*expressed as shear stress vs. critical shear stress*);

• *Geotechnical*: *Downslope gravitational force* (resisted by cohesive and frictional strengths)
The Analytic Approach

Static and Dynamic Numerical Modeling

• Collect field data to define the variables that control the processes (force and resistance);

• Use that data with physically-based analytic solutions/models to test plans and designs;

• Use the best available numerical models for prediction
Hydraulic Shear Force and Resistance

\[\tau_o = \gamma_w R S \]

- \(\tau_o \) = mean boundary shear stress
- \(\gamma_w \) = unit weight of water
- \(R \) = hydraulic radius = \(A / (2y + w) \)
- \(S \) = channel gradient

\[\tau^* = \tau_o / [(\gamma_s - \gamma_w) d] \]

- \(\tau^* \) = dimensionless shear stress
- \(\gamma_s \) = unit weight of sediment
- \(d \) = characteristic particle diameter

\[R_e = (U^* d) / \nu \]

- \(R_e \) = boundary Reynolds number
- \(U^* \) = shear velocity = \((g R S)^{0.5} \)
- \(\nu \) = kinematic viscosity (function of water temperature)

\[\square = \text{measured in the field} \]

\[y \text{ and } x \text{ axes of Shields diagram} \]
Collect the Data

Hydraulic Resistance (bed and banks):

Non-cohesive: bulk particle size or particle count for τ_c

Cohesive: submerged jet-test device

Equivalent to critical shear stress where rate of scour becomes 0.0 mm/min
Geotechnical: Force vs. Resistance

Factor of Safety \((F_s) \) = \underline{Resisting Forces} / \underline{Driving Forces}

If \(F_s \) is greater than 1, bank is stable. If \(F_s \) is less than 1 bank will fail. (We usually add a safety margin: \(F_s > 1.3 \) is stable.)

Resisting Forces
- soil shear strength
- matric suction
- root reinforcement
- confining force

Driving Forces (gravity)
- bank angle
- weight of soil mass
- weight of water in bank
- bank height
Components of Shear Strength
(ie. for saturated conditions)

\[\tau_f = c' + (\sigma - \mu_w) \tan \phi' \]

Where:
- \(\tau_f \) = shear strength (kPa);
- \(c' \) = effective cohesion (kPa);
- \(\sigma \) = normal load (kPa);
- \(\mu_w \) = pore water pressure (kPa); and
- \(\phi' \) = effective friction angle (degrees)

\(\square \) = measured in the field
Collect the Data

Geotechnical Resistance (banks):

- **Coarse-grained, non-cohesive:** particle count for ϕ'; $c' = 0.0$
- **Cohesive:** borehole shear tester (BST) or laboratory analysis for c' and ϕ'

Default values by soil type are available but increase uncertainty
Differentiate Between Hydraulic and Geotechnical Protection

Hydraulic Protection
- Hydraulic protection reduces the available boundary hydraulic shear stress, and increases the shear resistance to particle detachment.

Geotechnical Protection
- Geotechnical protection increases soil shear strength and decreases driving forces.
Vegetation as a River Engineer

- Above and below-ground biomass
- Process Domains
- Role of vegetation can be quantified

<table>
<thead>
<tr>
<th>Process Domain</th>
<th>Geotechnical</th>
<th>Hydrologic</th>
<th>Hydraulic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Ground</td>
<td>Surcharge</td>
<td>Interception</td>
<td>Roughness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evapotranspiration</td>
<td>Applied shear stress</td>
</tr>
<tr>
<td>Below Ground</td>
<td>Root reinforcement</td>
<td>Infiltration</td>
<td>Critical shear stress</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Matric suction</td>
<td></td>
</tr>
</tbody>
</table>
Benefits of Process-Based Approach

• Can test design scenarios for performance under a range of flow conditions before they are built;
• Can modify designs and re-test;
• Avoid under-design and reduce risk of project failure;
• Avoid over-design and cost over-runs;
• Can provide analysis of effectiveness of different designs;
• Can provide analysis of cost-effectiveness in real terms of cost per amount of reduction (\(\text{ie. } \$/m^3 \text{ or } \$/m \))

Analysis as part of the design process has been shown to be cost effective by reducing risk and uncertainty (Niezgoda and Johnson, 2007)

Technology is available and cost effective!!
For Bank Erosion:

- 2-D wedge- and cantilever-failures
- Tension cracks
- Search routine for failures
- Hydraulic toe erosion
- Increased shear in meanders
- Accounts for grain roughness
- Complex bank geometries
- Positive and negative pore-water pressures
- Confining pressure from flow
- Layers of different strength
- Vegetation effects: RipRoot
- Inputs: $\gamma_s, c', f', \phi^b, h, u_w, k, \tau_c$
Example: The Role of Toe Protection

Verify the bank material and bank and bank-toe protection information entered in the “Bank Material” and “Bank Vegetation and Protection” worksheets. Once you are satisfied that you have completed all necessary inputs, hit the “Run Toe-Erosion Model” button (Center Right of this page).

Slope = 0.0035 m/m
Depth = 2.5 m
Toe material: silt
Eroded: 0.66 m²

Slope = 0.0035 m/m
Depth = 2.5 m
Toe material: wood
Eroded: 0.28 m²
Channel-Modeling Capabilities

<table>
<thead>
<tr>
<th>Process</th>
<th>BSTEM</th>
<th>HEC-RAS</th>
<th>SRH-2D</th>
<th>HEC+ BSTEM</th>
<th>SRH-2D+BSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shear in meanders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bank-toe erosion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass-failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bed erosion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sediment transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘Hard’ engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel evolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid Assessments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alpha version of HEC-RAS/BSTEM is now being tested by CoE, Cardno ENTRIX and USDA-ARS
Sandy River, OR

Objectives:

1. Predict migration of meander bend and timing of threats to park infrastructure;
2. Quantify reduction in retreat rates under various mitigation measures

Flow series for calibration

In cooperation with Brian Vaughn, Portland METRO
50-Year Simulation Results

[Map with various labeled areas such as "Play Structure #1", "Group Picnic Area C", "Downstream Project Boundary", etc.]

NOTES:
1. ONLY THE LEFT SHORELINES ARE SHOWN FOR CLARITY.
2. ALL INFRASTRUCTURE LOCATIONS ARE APPROXIMATE.
3. BACKGROUND AERIAL PHOTO IS 2011 NAIP
Timing of Associated Threats to Park Infrastructure

<table>
<thead>
<tr>
<th>Infrastructure Type (points)</th>
<th>2011</th>
<th>2022</th>
<th>2037</th>
<th>2047</th>
<th>2062</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Structures (1 Point)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Play Structure #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Play Structure #2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Picnic and Campgrounds (2 Points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Picnic A</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Picnic B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Picnic C</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Picnic D</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Picnic E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Camp #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Camp #2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrooms and Showers (3 points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Door Restroom #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2 Door Restroom #2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4 Door Restroom #3</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4 Door Restroom #4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Door Restroom #5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4-Door Showers #1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-Door Showers #2</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Roads (4 points)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Main Road</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boat Ramp</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential Infrastructure (5 points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sewer System</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative Relocation Cost Score</td>
<td>11</td>
<td>20</td>
<td>16</td>
<td>19</td>
<td>14</td>
</tr>
</tbody>
</table>
Testing Alternative Treatments

<table>
<thead>
<tr>
<th>Modeled Conditions</th>
<th>High GW case Fs (GW 9.31 m above bed)</th>
<th>Bank top retreat (m)</th>
<th>Geotechnical erosion (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (with stream curvature)</td>
<td>0.99</td>
<td>10.7</td>
<td>97.6</td>
</tr>
<tr>
<td>Grade to 1:1 (with stream curvature)</td>
<td>1.53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RipRap to 15% bank height (with stream curvature)</td>
<td>1.07</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grade + RipRap (with stream curvature)</td>
<td>2.18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flow deflection (stream curvature turned off)</td>
<td>1.49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flow deflection + riprap (stream curvature off)</td>
<td>1.50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flow deflection + grade (stream curvature off)</td>
<td>1.67</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vegetation (with stream curvature)</td>
<td>1.00</td>
<td>10.7</td>
<td>97.6</td>
</tr>
<tr>
<td>Vegetation + grade (with stream curvature)</td>
<td>1.98</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vegetation + riprap (with stream curvature)</td>
<td>1.23</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vegetation + flow deflection (stream curvature off)</td>
<td>1.49</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

A range of alternative treatments would be successful here. Ultimate decision is a function of cost, permitting and policy.
Bayou Pierre, MS
Encroachment on Gas Pipeline
Simulated Retreat: 30 Years
(Calibrated with 2-D Hydraulic Modeling)

Spoke 2-4

Spoke 2-6
Predicting Bend Migration

E = Existing pipeline; A, A/B, B and D represent alternative routes
Burnett River, Queensland, AUS

January 2013 flood of record: RI
at least 140 years

Bank erosion: 48 Mt over 3.8 years!!

Objectives:

1. Protect local assets from bank erosion;
2. Determine cost-effective treatments
3. Reduce fine loads to the Great Barrier Reef
Once calibrated, 10-year simulations for “no action” and alternative strategies were conducted.
Erosion under Alternative Treatments

10-year flow series

Includes 2011 and 2013 floods

“No action”

Includes 2011 and 2013 floods
Estimate Costs
(similar relations for wood structures; heavy machinery; plantings, etc.)

From D. Derrick, written comm., (2013)

Assuming $81.50/t (AUS)
Cost Effectiveness
(to hold the line or not)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Protection</th>
<th>Unit Cost</th>
<th>Cost effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height</td>
<td>Length</td>
<td>($/m)</td>
</tr>
<tr>
<td>No Action</td>
<td>-</td>
<td>-</td>
<td>$0</td>
</tr>
<tr>
<td>With vegetation</td>
<td>13.2</td>
<td>530</td>
<td>$66</td>
</tr>
<tr>
<td>Rock at toe</td>
<td>4.1</td>
<td>530</td>
<td>$1,360</td>
</tr>
<tr>
<td>Rock toe with vegetation</td>
<td>4.1</td>
<td>530</td>
<td>$1,430</td>
</tr>
<tr>
<td>Rock toe and bank face</td>
<td>11.1</td>
<td>530</td>
<td>$5,680</td>
</tr>
<tr>
<td>Rock toe and lower bank with vegetation</td>
<td>6.6</td>
<td>530</td>
<td>$2,790</td>
</tr>
<tr>
<td>2:1 battering with vegetation</td>
<td>13.2</td>
<td>530</td>
<td>$186</td>
</tr>
<tr>
<td>32 degree bank with vegetation</td>
<td>13.2</td>
<td>530</td>
<td>$186</td>
</tr>
<tr>
<td>Vegetation with bendway weirs</td>
<td>13.2</td>
<td>530</td>
<td>$1,560</td>
</tr>
<tr>
<td>Vegetation with ELJs</td>
<td>13.2</td>
<td>530</td>
<td>$260</td>
</tr>
<tr>
<td>Vegetation with bendway weir and rock toe</td>
<td>13.2</td>
<td>530</td>
<td>$2,920</td>
</tr>
<tr>
<td>Vegetation with ELJs and rock toe</td>
<td>4.1</td>
<td>530</td>
<td>$1,620</td>
</tr>
</tbody>
</table>
Cost Effectiveness

Bar chart showing percent reduction in sediment eroded from banks and reduction in banktop retreat for different treatments, along with total cost in AUS$.
Summary and Conclusions

• Gravity and the physics of erosion and sediment transport are a constant, allowing us to quantify force and resistance mechanisms.

• We can collect all of the data we need at a site/reach to quantify driving and resisting forces operating on the channel boundary.

• Using principles of hydrology, hydraulics and geotechnics we can use our field data to inform numerical tools and models.

• Analyses and models can then be used to quantify performance and effectiveness of a range of alternative strategies.

• By applying a cost basis to each strategy, we can provide a range of cost-effective options to be considered.