

Riparian Resilience in the Face of Interacting Disturbances

Erosion

Beaver

Wildfire 2014 Carlton Complex

Historic Fire Patterns

- Frequent
- Smaller scale
- Low severity

Recent Fire Patterns

- Frequent-suppressed
- Larger scale
- Higher severity
 O'Connor et al 2014

2000-2003

Increasing wildfire scale & burn severity = severe erosion & channel incision

Incising events after Wildfire

- Flood control
- Water storage
- Stream complexity
- Habitat/Biodiversity
- Water table
- Floodplain connectivity

Incising event post-Wildfire

- Flood control
- Water storage
- Stream complexity
- Habitat/Biodiversity
- Water table
- Floodplain connectivity

Time?

Return to original dynamic disequilibrium?

Time? Timescale (logarithmic) 103 Dynamic equilibrium Aggrading × Incising Widening Pollock et al 2014 Cluer & Thorne 2013

Return to original dynamic disequilibrium

 Logarithmic timescale 100's-1000's of years

Time? Timescale (logarithmic) 103 Dynamic equilibrium Aggrading × Incising Widening Pollock et al 2014 Cluer & Thorne 2013

Incised stable state

b. degrading

c. degrading & limited widening

d. aggrading/quasi equilibrium

Beechie et al 2007

Beaver dam building activity:

- ★ Flood attenuation
- ★ Water storage
- **1** Stream complexity
- ★ Habitat/Biodiversity
- ★ Water table
- **floodplain connectivity**

Naiman et al 1988

Can beaver activity increase the resilience of burned & degraded riparian systems

Study Design

3 Sets	Beaver	No Beaver
Fire	1,1	1,0
No Fire	0,1	0,0

= <10% slope of stream

= Fires over last 20 years

= beaver location

Study Site Locations

- = Fires over last 20 years
- = <10% slope of stream
- = study site watersheds
- = beaver study site
 - = non beaver study site

Methods

Methods

Vegetation species composition and ground cover

Stream channel substrate

Channel cross sections

Water quality parameters
Temperature,
% dissolved oxygen,
pH
Total Phosphate

Channel Cross Sections

Bankfull elevation

Beechie et al 2007

Bankfull Width/Depth Ratio

channel form & stability erosion & deposition processes

stream evolution potential Connection w/ floodplain

Do beavers increase Width/Depth ratios in burned watersheds?

Absent Present Beaver

Do beavers increase Width/Depth ratios in burned watersheds?

Do beavers increase Width/Depth ratios in burned watersheds?

Phosphate and water quality after wildfire

Limiting nutrient

Concentrations increasing 5-10 years after fire (Rust et al 2018) Contributes to eutrophication

Total Phosphorus Analysis

- Filtered and digested samples
- Molybdate/Ascorbic Acid "Blue" method

Do beavers effect concentration of Total Phosphate in burned watersheds?

Burned
Not burned

Transect

Downstream

Upstream

Burned/Not Burned

p-value = 0.002

Beaver presence/absence

p-value = 0.038

Do beavers effect concentration of Total Phosphate in burned watersheds?

Burned

Not burned

Transect

Downstream

Upstream

Burned/Not Burned

p-value = 0.002

Beaver presence/absence

p-value = 0.038

Do beavers increase riparian resilience after Wildfire?

Width/Depth ratios in burned channels

Phosphate after fire

Next Steps:

Vegetation species composition
Water quality analyses

Acknowledgements

- My dear family!
- Rebecca Brown, Margaret
 O'Connell, Lauren Stachowiak, Stacy
 Warren EWU
- Sue Niezgoda Gonzaga U.
- Torre Stockard & Julie Nelson, Methow Beaver Project
- Kent Woodruff (Retired) & John Rohrer, USFS Methow District
- EWU GSA, Schwartz Fellowship, Joy Science Scholarship
- My Research Crew Cole Sherwood, Carissa Simpson, Willy Duguay, Joe Weirich, Jess Rolland

Questions?

Contact Info:
Alexa Whipple

awhip20@gmail.com

