Tribal Partnership Program
Jamestown S’Klallam Tribe and USACE
Dungeness River in Washington State

Zac Corum, PE, Sr. Hydraulic Engineer,
Seattle District USACE
Randy Johnson, Habitat Program Manager (JSKT)
Rachel Mesko, Senior Water Resources Planner, Seattle District USACE

Presented to 2017 River Restoration Symposium
8-Feb 2017
Overview

- Tribal Partnership Program (Section 203) introduction
- Dungeness River study overview and purpose
- Setting/Study Area
- Issues affecting basin that require action
- Modeling overview
- Modeling results
- Study conclusions
- Summary/Take Aways
USACE Tribal Partnership Program Overview

- **Program overview:**

 The Tribal Partnership Program (Section 203 of WRDA 2000, as amended) is an authority which allows **federally recognized Indian Tribes** to request the Secretary of the Army to conduct a study on the feasibility of projects that address **economic, environmental, and cultural resource needs**

- **Program goals:**

 1. Partner with Tribes on the study, design and execution of water resource related projects (**flood damage reduction, ecosystem restoration, watershed studies**)
 2. Substantially benefit Indian Tribes for projects in Indian Country

- **Geographic scope of mission → Nationwide**

- **Who initiates study? Federally recognized Tribes**

- **Funding**

 - First $100k from USACE used to develop initial “reconnaissance report” (**amended most recently in FY2017**)
 - If recon report determines Federal interest and Congress allocates $, feasibility study and implementation can follow
• Dungeness River Basin includes **treaty-protected harvest rights** with the Jamestown S’Klallam Tribe’s usual and accustomed harvest area

• River used by 7 species of salmonids

• **4 species listed under ESA:** Chinook, summer chum, steelhead, bull trout

• Tribe and local stakeholder groups actively working to restore habitat and reduce flood damages
Dungeness River and Watershed

- 28 miles long – drains ~ 200 square miles of Olympic Mountains and lowlands near Strait of Juan de Fuca/Salish Sea
- Sister basin to Elwha River
- Basin annual rainfall varies from < 10 inches in Sequim to > 100 inches in headwaters
- Mean annual flow ~ 380 cfs. Bankfull flow ~ 3000 cfs. Annual peak streamflow varies from 740 cfs to 7,610 cfs.
- Transitions from braided to anabranching to single thread morphology in lower 6 miles
Dungeness River and Watershed – Study Area

Study Reach (RM 0 to RM 4)

“Reference Reach” (RM 6.4 to RM 5)
Avulsions and bank erosion supply large quantities of coarse sediment to the river in this **unconfined reach** recovering from historical channel clearing. Boulders and cobble are dominant. **LW, large pools and side channels frequent.** Highly **dynamic.** ELJs present.
Dungeness River – Study Area Reach 3 - River Mile 1.5-2.7

Confined by only one levee. Wood and pools more frequent. **Higher complexity** where not armored. **Aggrading**. Part of CAP Section 1135 restoration project reach.
Historical Habitat Loss and Degradation Summary

1870s to present - RM 0-12

- 30% of river banks armored
- 40% of potential 100-year floodplain disconnected in lower 4 miles by alterations
- Logging, clearing and snagging until 1980s, gravel mining until 1990s
Lower Dungeness River Restoration Strategy

- Restoration concepts provided by JSKT
- River is ecologically functional but distressed
- Focus on most heavily impacted lower 4 miles
- Primary restoration study strategy → set back existing levees to restore ecosystem structures, functions, and processes
- Remove the obstructions to channel migration; let the river, natural processes, and time do the work
Pre-development: River divided into multiple channels, distributing water, sediment, organics, nutrients and energy across floodplain. Channel free to avulse and migrate. Complex conditions create good habitat.
Floodplain development:

- Floodplain cleared for timber and development (agriculture, residential)
- “Snags” removed to increase channel capacity
- Bank erosion/sedimentation/instability increase
Lower Dungeness River → Problem = **Levee Disease***

* as coined by Mr. Joel Freudenthal, Yakima County Public Works restoration lead

Post-development:

- Flooding leads to requests to build levees. River forced into narrow channel by levees, water levels & velocities increase
- Floodplain disconnected by levees and developed
- Habitat disconnected and degraded
- Flood risks initially reduced but increased with time due to sedimentation and development (residual risks)
Lower Dungeness River → Solution = Levee Removal/Setback

Proposed Project actions (to be completed under another authority)

• Identify “low hanging fruit” for restoration
• Acquire property and set back levees
• Reconnect habitat and let natural processes do the work
• Resiliency increased, flood damages reduced
Lower Dungeness River – Desired end state (adapted to built environment)

Multi-phase restoration conceptual framework

• Use initial successes to educate and build local support for future restoration phases
Study Methodology – 5 steps

1. GIS data collection and concepts
2. Modify terrain models in GIS
3. H&H modeling
4. Preliminary design
5. Parametric cost estimates and recommendations for further study

<table>
<thead>
<tr>
<th>Phase</th>
<th>Total Project First Cost (October 2015 Price Levels, Rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$225,000</td>
</tr>
<tr>
<td>3</td>
<td>$5,725,000</td>
</tr>
<tr>
<td>4</td>
<td>$12,970,000</td>
</tr>
<tr>
<td>6</td>
<td>$3,670,000</td>
</tr>
<tr>
<td>7</td>
<td>$3,290,000</td>
</tr>
<tr>
<td></td>
<td>Construction Estimate Total $25,880,000</td>
</tr>
<tr>
<td></td>
<td>Lands & Damages</td>
</tr>
<tr>
<td></td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td>Planning, Engineering & Design</td>
</tr>
<tr>
<td></td>
<td>$9,075,000</td>
</tr>
<tr>
<td></td>
<td>Construction Management</td>
</tr>
<tr>
<td></td>
<td>$3,830,000</td>
</tr>
<tr>
<td></td>
<td>TOTAL $38,785,000</td>
</tr>
</tbody>
</table>

*Note: Real Estate estimates for land acquisition, relocations, etc. are not included in this cost estimate.
Hydraulic Model Overview

- Combines over 50 recently surveyed river cross sections with 2008 and 2012 LiDAR data
- Models all overbank flood areas using latest version of HEC-RAS 5.0 (1-D channel and 2-D floodplain)
- Allows for simulation of velocity, depth, inundation area at any location and point in time
- Assumes constant steady high tide, 100-year river flow (steady or event hydrograph)
- FAST RUN TIMES
Restoration scenarios analyzed by USACE

*Phase 1 is currently underway under separate project authority
100-year Inundation, Existing Condition
100-year inundation, All Phase Restoration

Legend
- + USGS river miles
- Yellow Setback levee
- Depth All Phase Restoration
- feet
 - High: 15
 - Low: 0

Sources: Esri, DeLorme, USGS, NPS. Sources: Esri. USGS, NOAA
Hydraulic Modeling Results

<table>
<thead>
<tr>
<th>Restoration Project</th>
<th>Linear Length Removed (feet)</th>
<th>New Floodplain Area (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>2817</td>
<td>98</td>
</tr>
<tr>
<td>Phase 2</td>
<td>440</td>
<td>21</td>
</tr>
<tr>
<td>Phase 3</td>
<td>6916</td>
<td>68</td>
</tr>
<tr>
<td>Phase 4</td>
<td>5910</td>
<td>72</td>
</tr>
<tr>
<td>Phase 6</td>
<td>1626</td>
<td>7</td>
</tr>
<tr>
<td>Phase 7</td>
<td>7615</td>
<td>31</td>
</tr>
<tr>
<td>Phase 1+3</td>
<td>9733</td>
<td>166</td>
</tr>
<tr>
<td>Phase 1+4</td>
<td>8727</td>
<td>170</td>
</tr>
<tr>
<td>Phase 1+3+4</td>
<td>15643</td>
<td>238</td>
</tr>
<tr>
<td>Phase 1+3+4+7</td>
<td>23258</td>
<td>245</td>
</tr>
<tr>
<td>Phase 4+7</td>
<td>13525</td>
<td>103</td>
</tr>
<tr>
<td>Phase 1+2+3+4+6+7</td>
<td>23,698</td>
<td>266</td>
</tr>
</tbody>
</table>

Note – acreages updated from those provided by JSKT based on GIS area. Phase 7 includes 3,128 lineal feet of road removal, 2,061 lineal feet of agricultural berm removal, and 2,425 lineal feet of rock revetment removal along Ward road.
Hydraulic Modeling Results

<table>
<thead>
<tr>
<th>Restoration Project</th>
<th>Average Main Channel Velocity in Project Reach (ft/s)</th>
<th>Average Main Channel Velocity for Existing Conditions in Project Reach (ft/s)</th>
<th>Average Decrease in Flood Elevation in Restoration Area (ft)</th>
<th>Average Percent Decrease in Velocity in Restoration Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td>6.1</td>
<td>7.5</td>
<td>1.0</td>
<td>23%</td>
</tr>
<tr>
<td>Phase 2</td>
<td>9.2</td>
<td>10.0</td>
<td>0.1</td>
<td>9%</td>
</tr>
<tr>
<td>Phase 1+3</td>
<td>5.6</td>
<td>7.6</td>
<td>2.1</td>
<td>36%</td>
</tr>
<tr>
<td>Phase 4</td>
<td>5.4</td>
<td>7.0</td>
<td>2.0</td>
<td>30%</td>
</tr>
<tr>
<td>Phase 6</td>
<td>8.0</td>
<td>9.2</td>
<td>0.0</td>
<td>15%</td>
</tr>
<tr>
<td>Phase 7</td>
<td>6.6</td>
<td>6.8</td>
<td>0.0</td>
<td>3%</td>
</tr>
<tr>
<td>Phase 1+3+4</td>
<td>5.0</td>
<td>7.6</td>
<td>4.0</td>
<td>52%</td>
</tr>
<tr>
<td>Phase 1+3+4+7</td>
<td>5.0</td>
<td>7.2</td>
<td>3.0</td>
<td>44%</td>
</tr>
<tr>
<td>Phase 4+7</td>
<td>5.4</td>
<td>7.3</td>
<td>1.2</td>
<td>35%</td>
</tr>
<tr>
<td>All phase (avg.)</td>
<td>5.3</td>
<td>7.3</td>
<td>2.9</td>
<td>38%</td>
</tr>
</tbody>
</table>
Restoration Study Conclusions

• Lower Dungeness River’s floodplain extent has been significantly reduced by levee construction, which has reduced flood risk for commercial, agricultural and residential developments landward of the levees.

• It is estimated that upwards of 463 acres of active (defined as wetted during the 100-year flood) floodplain area have been converted to other uses.

• Levee removal and set backs could potentially restore from 1 acre (Phase 7) to 164 acres (Phase 1+2+3+4+6+7) of active floodplain, and a similarly large amount of riparian buffer and future floodplain given channel migration.

• Project in federal interest – Corps in discussions to cost share under implementation authority
Restoration Study Conclusions

• If restoration projects are implemented, hydraulic conditions during floods in restored reaches should quickly approach conditions typical of unconfined reaches upstream and downstream of the restoration project areas.

• The proposed changes are likely to sustainably improve habitat quantity and quality in the treated reaches.

• Ecosystem restoration activities may provide ancillary flood risk management benefits in the project area.
Take-Aways

• **Dungeness River Restoration Study (Phase 1)**
 - Development including road and levee construction have isolated or converted 470 acres (40%) of the historical floodplain to other land uses in the lower 4 miles of river.
 - Restoration through land acquisition, levee removal, and setbacks could restore more than half of the habitat lost to development (266 acres).
 - HEC-RAS 5.0 was instrumental in rapidly analyzing and communicating expected floodplain changes to public in a manner that is intuitive and impactful.
Take-Aways

• **Tribal Partnership Program**
 - Sponsor (Jamestown S'Klallam Tribe) was pleased with findings and initiated discussions on how USACE implementation authorities (CAP, GI) could further Tribe’s restoration goals
 - Authority specifically for federally-recognized Tribes; provides **broader flexibility for more rapid analysis of critical issues free from typical constraints of Corps process**
 - Program is well positioned to support a wide range of studies throughout the Seattle District and Northwest Division
 - **Good opportunity to build trust and accelerate development of restoration plans**
More Info and Points of Contact

Seattle District USACE: Frances (Lori) Morris, Tribal Liaison
http://www.nws.usace.army.mil/Missions/Civil-Works/Programs-and-Projects/Authorities/Tribal-Partnership-Program/

Northwest Division USACE

Jamestown S’Klallam Tribe Habitat Restoration Program: Randy Johnson
rjohnson@jamestowntribe.org
http://www.jamestowntribe.org/programs/nrs/nrs_habrest.htm