What is a Pool and Chute Fishway?

- Hybrid type fishway that operates in two flow regimes, plunging and streaming flow
- Low flow – Pool and Weir
- High Flow - Chute
Low Flow – 0.5 cfs

Medium Flow – 15 cfs
High Flow – 35 cfs

Background

- Rainbow Creek
- WDFW Model Study
- Town Dam
- Bates, 1991 AFS Paper

Photos by Ken Bates
Pool and Chute - Definition

- Side Walls
- Baffle
- Weir
- Port
- Floor

Pool and Chute - Cross Section

- \(W \)
- \(\theta/2 \)
- \(X_{pc} \)
- \(d \)
- \(b \)
- \(P_b \)
- \(P_w \)
Pool and Chute – Profile – Plunging Flow
Pool and Chute – Profile – Streaming Flow

Equations

\[Q = CLH^2 \] Flow over a weir

\[V = C\sqrt{RS_0} \] Open channel flow Chezy Eq.

\[EDF = \gamma QH/Volume \]
Research on streaming/plunging flow regimes

\[Q_t = 0.25 \sqrt{gbS_o L^2} \]

Streaming/Plunging Flow Regimes

Transition

Streaming

Plunging
Streaming/Plunging Flow Regimes
Streaming Flow – High Design Flow

Plunging
Streaming
EDF

Good/Fair Passage Corridor
Streaming transition flow calculations

\[Q_t = 0.25 \sqrt{gbS_o \frac{3}{L^2}} \]

Example: \(b = 6 \text{ ft} \) \(S_o = 10\% \)

\(L = 4 \text{ ft} \) \(Q_t = 7 \text{ cfs} \)

\(L = 6 \text{ ft} \) \(Q_t = 12 \text{ cfs} \)

\(L = 8 \text{ ft} \) \(Q_t = 19 \text{ cfs} \)

Case Studies - Parameters

<table>
<thead>
<tr>
<th>Site</th>
<th>W</th>
<th>L</th>
<th>b</th>
<th>(P_b)</th>
<th>S_o</th>
<th>theta/2</th>
<th>S_oL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ft)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>(ft/ft)</td>
<td>(deg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairchild Trib</td>
<td>12</td>
<td>5.5</td>
<td>2.0</td>
<td>3.0</td>
<td>0.145</td>
<td>76</td>
<td>0.8</td>
</tr>
<tr>
<td>Fairchild Cr</td>
<td>12</td>
<td>5.5</td>
<td>2.0</td>
<td>3.0</td>
<td>0.145</td>
<td>76</td>
<td>0.8</td>
</tr>
<tr>
<td>Rainbow Cr</td>
<td>12</td>
<td>6</td>
<td>1.5</td>
<td>2.5</td>
<td>0.125</td>
<td>79</td>
<td>0.75</td>
</tr>
<tr>
<td>Percival Cr</td>
<td>10</td>
<td>5.5</td>
<td>2.0</td>
<td>3.0</td>
<td>0.145</td>
<td>76</td>
<td>0.8</td>
</tr>
<tr>
<td>Morganroth</td>
<td>7</td>
<td>4</td>
<td>1.4</td>
<td>2.4</td>
<td>0.200</td>
<td>70</td>
<td>0.8</td>
</tr>
<tr>
<td>Model Study</td>
<td>28</td>
<td>11</td>
<td>6.0</td>
<td>7.5</td>
<td>0.100</td>
<td>73</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Case Studies - Results

<table>
<thead>
<tr>
<th>d or H (ft)</th>
<th>Q (cfs)</th>
<th>Q_t (cfs)</th>
<th>C (ft)</th>
<th>X_{pc} (ft)</th>
<th>EDF</th>
<th>Passage Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairchild Trib</td>
<td>1.75</td>
<td>44</td>
<td>5.3</td>
<td>31.5</td>
<td>1.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Fairchild Creek</td>
<td>1.65</td>
<td>29</td>
<td>5.3</td>
<td>20.5</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>Rainbow Creek</td>
<td>1.90</td>
<td>88</td>
<td>3.9</td>
<td>13.6</td>
<td>0.0</td>
<td>14.9</td>
</tr>
<tr>
<td>Percival Creek</td>
<td>1.50</td>
<td>24</td>
<td>5.3</td>
<td>22.3</td>
<td>1.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Percival Creek</td>
<td>1.20</td>
<td>7</td>
<td>5.3</td>
<td>9.6</td>
<td>2.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Morganroth</td>
<td>1.20</td>
<td>7</td>
<td>3.2</td>
<td>12.0</td>
<td>1.6</td>
<td>0.9</td>
</tr>
<tr>
<td>WDFW Run 17</td>
<td>3.41</td>
<td>304</td>
<td>33.8</td>
<td>29.4</td>
<td>4.5</td>
<td>1.8</td>
</tr>
<tr>
<td>WDFW Run 19</td>
<td>4.00</td>
<td>305</td>
<td>31.0</td>
<td>30.2</td>
<td>8.7</td>
<td>0.2</td>
</tr>
<tr>
<td>WDFW Run 20</td>
<td>4.21</td>
<td>468</td>
<td>38.9</td>
<td>31.1</td>
<td>2.8</td>
<td>3.8</td>
</tr>
<tr>
<td>WDFW Run 21</td>
<td>1.80</td>
<td>106</td>
<td>33.8</td>
<td>28.0</td>
<td>10.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fairchild Trib: W = 12 ft

- Q = 44 cfs
- D = 1.75 ft
- Q_t = 5.3 cfs
- Chezy C = 31.5
- X_{pc} = 1.2
- EDF = 2.4
- Passage Rating: Fair
Fairchild Creek: $W = 12 \text{ ft}$

- $Q = 27 \text{ cfs}$
- $D = 1.65 \text{ ft}$
- $Q_t = 5.3 \text{ cfs}$
- Chezy $C = 20.5$
- $X_{pc} = 1.6$
- EDF = 2.1
- Passage Rating
 - Good

Percival Creek: $W = 10 \text{ ft}$

- $Q = 24 \text{ cfs}$
- $D = 1.5 \text{ ft}$
- $Q_t = 5.3 \text{ cfs}$
- Chezy $C = 22.3$
- $X_{pc} = 1.5$
- EDF = 1.3
- Passage Rating
 - Good
Fairchild Comparison

Chezy C vs Q_{st}

Unit Q_{st} (cfs/ft)
Design Parameters

- **Overall Drop:** maximum 4 to 5 feet
- **Fishway Width:**
 - 10 cfs = 8 feet, 25 cfs = 10 feet
 - 50 cfs = 14 feet, 120 cfs = 20 feet
- **Slope/Drop per Weir = 0.5 to 1.0 feet**
 - Most u/s weir 0.2 ft less
- **Pool Length = 45 to 55% of width**
- **Weir Length = 17 to 20% of width**
- **Weir Height = minimum 2.5 feet**

Design Parameters

- **Baffle Height =** $WS @ 0.75Q_{st}$
- **Baffle Slope = 76°**
- **Fish Passage Corridor: 2 feet**
- **EDF: 2**
- **Submerged Ports: Only 16 cfs min flow**
Design Steps

- Calculate high Q_{fp}
- Select: W, baffle slope, drop, L, b, P_w
- Calculate: Q_t
- Select d and C
- Trial and error until $Q = Q_{fp}$
- Check: EDF, X_{pc}

Design Spreadsheet: powerpdp@dfw.wa.gov

Limitations/Potential Research

- Number of weirs and fishway length
- Alignment (half Pool and Chute)
- Roughness values (weir/baffle crest shape)
- EDF – juvenile passage studies
- Scour potential at outlet
Summary

- Applicable to low head dams and some culvert retrofits with drops 4 to 6 feet.
- Improved attraction flows over other fishway types
- Many are self cleaning (gravel/small cobbles)
- Diverse passage routes for all life stages of salmonids